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I, Kimberley Simmonds, of the City of Edmonton, in the Province of Alberta, AFFIRM 

AND DECLARE THAT: 

1. From March 2020 until March 2021, I supported Alberta's Emergency Operations Centre 

as the lead for analytics and modelling for Alberta's COVID-19 response. 

2. I have personal knowledge of the facts and matters hereinafter deposed to by me, except 

where same are stated to be based upon information and belief, and those I believe to be true. 
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3. I have a PhD in epidemiology and my thesis combined mathematical modelling and 

classic epidemiology. I am an adjunct professor at the University of Calgary Cummings School 

of Medicine. Additional qualifications are set out in my Curriculum Vitae attached as Exhibit A. 

4. I am an applied epidemiologist having worked in various settings from the hospital as an 

infection control hospital epidemiologist to leading the provincial responses to population-based 

outbreaks such as measles, pertussis, and more recently COVID-19. My experience working in 

Alberta managing outbreaks and leading infectious disease surveillance in the province over the 

past fifteen years is relevant experience. 

5. I have made time to publish several peer reviewed papers including international 

collaborations with the US Centre for Disease Control (CDC) on the epidemiology of HlNl and 

seasonal influenza. I have developed and used compartment models such as the Susceptible 

Infected-Recovered (SIR) models for both COVID-19 and influenza. 

6. In addition to my work as an epidemiologist, I have worked in a senior strategic policy 

role for the provincial government, allowing me to understand the nuances of policy 

development while considering the most relevant epidemiological quantitative evidence. In 2020, 

I taught a course on pandemic policy development at University of Alberta. 

7. Due to my expertise in infectious disease epidemiology, mathematical modelling of 

infectious diseases, and policy, I was asked to support Alberta's Emergency Operations Centre 

as the lead for analytics and modelling for the COVID-19 response. 

8. The analytics team that supports the COVID-19 response grew over time but began with 

six epidemiologist/data analysts and one mathematical modeller (Dr Varughese). The Public 

Health Agency of Canada also provided one to two epidemiologists over most of the pandemic 

to support our more complex outbreak investigations. The mathematics department at the 

University of Alberta supported the lone mathematical modeller on the Alberta Health team. 

Over time the team expanded and there are now approximately ten staff providing analytic 

support. 

9. Alberta's response to case identification and case management is similar to the other 

provincial responses, with a couple of notable exceptions. In Alberta, case identification and 
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management are clearly laid out in the Alberta Public Health Disease Management Guidelines -

Coronavirus -COVID-19 that is updated as new information becomes available on the situation. 

A high-level overview is as follows: 

a. Identification occurs when a person has a laboratory confirmation of infection 

with the virus (SARS-CoV-2) that causes COVID-19. 

b. Data is electronically received from the testing laboratories in batches 

approximately every 10-15 minutes by the Provincial Surveillance Information 

(PSI) system, which is a key system used to monitor communicable diseases in 

the province. 

c. When contact tracers, led by Alberta Health Services, initiate a case investigation, 

the Communicable Disease & Outbreak Management (CDOM) system is used. 

The case information from CDOM is electronically submitted to Alberta Health 

into the Communicable Disease Reporting System (CDRS). The collected case 

information falls into the following broad categories: demographic, activities 

during the incubation period, where disease was likely acquired, activities while 

infectious, occupation, and disease symptoms and severity. 

10. Outbreak definitions and management are laid out in the Alberta Public Health Disease 

Management Guidelines -Coronavirus -COVID-19. In Alberta, when an outbreak is suspected, 

the laboratory assigns an Exposure Investigation (EI) number to all laboratory requisitions and 

reporting. This number is attached to all cases associated with the outbreak and is useful for 

tracking outbreaks. Between March 11, 2020 (when a pandemic was declared) and May 15, 

2021, there have been 4, 7 46 outbreaks identified in a diverse number of settings. A non­

exhaustive list of settings includes house parties, and social gatherings, congregate living, 

hospitals, offices, work camps, warehouses, places of worship, schools, and venues for fitness 

activities. Initially the most common outbreaks were in settings such as continuing care where 

those most vulnerable to severe outcomes as result of COVID reside, but quickly there were 

outbreaks in numerous settings. Attached as Exhibit B is an overview of outbreaks in places of 

worship and fitness locations in Alberta). 
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11. Reporting of surveillance information is critical to ensure a timely public health response. 

Numerous reports are produced on a regular basis to ensure that the required data and evidence is 

available to decision makers. In addition, ad-hoc reporting is routinely required for specific 

stakeholders and for Emergency Management Cabinet Committee (EMCC). Attached as Exhibit 

C is a list of daily report. 

12. In order to generate the reports, there was a daily reporting workflow. The details of the 

workflow for case reporting is detailed in Exhibit D. A brief overview of the daily reporting 

workflow is as follows: 

a. Combine data from laboratory data (in PSI), and case and possibly outbreak 

information (in CDRS). 

b. Extract the required data and use two statistical software programs, SAS and R 

studio, to pull in chronic disease data and daily hospitalizations and perform data 

management queries and cleaning including duplicate check and missing Unique 

lifetime identifiers (ULis ). 

c. Generate the final daily file for reports and the daily dashboard. 

13. Indicators were used throughout the pandemic response to provide a quick assessment of 

disease transmission and how well the health system was managing with the increase in COVID 

patients. Over time various indicators were reported to the public, but internally the following 

metrics were consistently reported at the zone level: lab testing positivity, active case rate, 

hospitalizations (including ICU), and R-value. 

14. The analytics team conducted risk assessments to inform policy decisions. The team was 

continuously reviewing all the available data to identify key trends at the local, zonal, and 

provincial level, including where disease was likely acquired and what activities had the highest 

transmission rates. A review of the literature and experiences in other jurisdictions was often 

used to supplement the local evidence provided. The analytics team looked at specific locations 

and activities of increased transmission to provide targeted approaches to restrictions. This 

information was then included in the relevant reports for decision makers. 
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15. The role of the analytics team during the COVID response was to provide the evidence to 

the Chief Medical Officer of Health (CMOH) and senior leadership at Alberta Health, who in 

turn determined what recommendations would proceed to elected officials who were ultimately 

the ones responsible for making the decisions. 

16. Modelling was used as a tool to forecast and assess the impact of COVID-19. Primary 

outcomes were cases and hospitalizations (ICU and non-ICU). Modelling was conducted using 

an age structured Susceptible-Infected-Recovered (SIR) compartment model and later revised to 

a Susceptible-Infected-Recovered-Susceptible (SIRS) model which accounted for vaccination in 

the population. Initial data for modelling was sparse and required significant effort to produce 

reasonable results as discussed in the paper found at 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC71040730 , a printout of which is attached as 

Exhibit E. However, the model did accurately predict uncontrolled spread as observed in the 

real-world experience in wave 2 of the pandemic in Alberta as shown in Alberta's fall 

predictions attached as Exhibit F. 

17. Predictive models were used to forecast throughout the pandemic. The most common was 

the SIR model that is often used to predict the transmission dynamics in a population. The basic 

concept is that a population can be organized into one of three compartments: susceptible, 

infected, and recovered. At the start of an outbreak most of the population are susceptible and as 

the infection spreads through the population more people are infected and subsequently, they 

recover or die. The probability that a susceptible and an infectious individual meet and the 

infection is passed from the infected to the susceptible is the effective transmission rate (~). In 

some circumstances, a condition called endemic equilibrium occurs and the disease rate is 

maintained at some static rate. This is sometimes the premise for letting an infection run through 

a population, the notion that eventually this state of endemic equilibrium occurs. Unfortunately, 

for respiratory diseases like COVID-19, this does not occur if anything upsets the equilibrium. 

Things that disrupt the equilibrium include new variants with increased~. waning immunity, 

new susceptible people in the population (births, in migration), or more infected people being 

introduced (e.g. travel). History has shown that infectious diseases are cyclical and unable to 

achieve consistent endemic equilibrium. Historical data from Alberta shows a cyclical pattern of 

outbreaks from measles, rubella, polio, and smallpox prior to widespread vaccine availability and 
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subsequent herd immunity. The outbreaks occurred as soon as enough births occurred that a 

large enough pool of susceptible people was created to then become infected. Graphs illustrating 

the above described are in the linked report: (https://open.alberta.ca/dataset/09ffDf40-1 cfc-48fd­

b888-4357104c3c32/resource/c5ceca04-ccda-481 l-9ed0-03a3cbe8c0fb/download/7019844-

notifiable-disease-incidence-1919-2014.pd:t), a printout of pages 1 to 17 of which is attached as 

Exhibit G. An endemic equilibrium state for COVID-19 is a hypothesis, however, in the real 

world it has not occurred. 

18. In the summer of 2020, modelling work focused the transmission dynamics of COVID-

19 with the population back indoors in offices and schools in the fall. Short term projections of 

the effects of various public health measures were evaluated to assess the change in 

cases/hospitalizations. Modelling predictions aligned with those from the Public Health Agency 

of Canada that stricter public health interventions would have the most significant effect on 

disease transmission rates. Short term projections were targeted to focus on the impact of 

COVID-19 on the acute care system to ensure there was enough health system capacity. The 

public health actions were to be informed by Alberta's data and experiences, up-to-date research, 

and experiences of other jurisdictions. The impact of proposed public health measures on 

transmission dynamics were assessed based on the following criteria provided to the analytics 

team- the goal was to protect those who are most vulnerable, tailor public health measures to 

local needs and circumstances as much as possible, and that consideration were made for the 

larger complex strategic context - health, economic, and social needs. 

19. In September 2020, cases increased from the August average of 99 daily cases to 141 in 

September, driven by increased COVID-19 transmission in the Edmonton Zone and some rural 

areas, notably the City of Lethbridge and the surrounding county. This subsequently resulted in 

an increase in COVID-19 hospitalizations, and on October 11 Alberta's hospitalizations and ICU 

admissions reached a new high with 85 hospitalizations and 16 ICU admissions for a total of 101 

hospitalizations including ICU. As Edmonton was experiencing a more significant level of 

disease transmission than the other areas of the province, voluntary measures were implemented 

to reduce the spread of COVID-19, specifically the potential for outbreaks and super spreader 

events: residents and visitors to the zone should limit gatherings to no more than 15 people; 

"Wear non-medical masks in all indoor work settings, except when alone in workspaces or 
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where there is adequate separation or barriers; and limit their cohorts to no more than three (a 

core/household cohort, a school cohort, one additional sport, social or other cohort), except 

young children, who can be part of four cohorts if they attend childcare". Approximately two 

weeks later, these voluntary measures were implemented in Calgary as well. 

20. In October, daily cases continued to increase, and measures provided for Thanksgiving 

weekend included indoor gatherings limited to only household and cohort members. The data 

from Alberta and worldwide showed household transmission of COVID-19 was higher than in 

other settings, which follows logically as transmission is a function of exposure time, proximity 

to others, and use of personal protective equipment (PPE). 

21. After the thanksgiving weekend, October 12, the rate of increase of new daily cases 

continued to rise. Edmonton remained the hotspot in the province with a weekly R1of1.35. The 

sized of the outbreaks continued to grow in acute and continuing care facilities putting pressure 

on the health system. 

22. The number of outbreaks rose steadily in October. Indoor and household gatherings 

became an increasing source of transmission. Two weeks after Thanksgiving, on October 26, the 

new daily cases, Rt, and positivity were all higher than they had ever been before. On October 26 

a mandatory 15-person limit on all social gatherings (indoor and outdoor) in the cities of 

Edmonton and Calgary was implemented. This limit applied to gatherings such as dinner parties, 

wedding and funeral receptions, banquets, and other gatherings. This excluded structured events 

such as dining in restaurants, theatres, worship services, or wedding and funeral ceremonies. 

23. In November 2020, as expected, the hospitalizations began to rise rapidly as case growth 

leads to hospitalization growth, but as a lagging indicator as it takes time get sick enough to 

require hospitalization. A key characteristic of COVID growth is that it can tum from 

manageable to exponential in a matter of days to weeks. As case growth became exponential, the 

data obtained from contact tracing became less timely and complete. The ability to identify 

outbreaks and link cases to events began to deteriorate. The evidence suggested that targeted 

restrictions were insufficient, and that acute care would be overwhelmed. On November 24, 2020 

with 1,264 new cases, 50,410 active cases in the province and 396 people in hospital and an 

additional 74 in the ICU, a state of public health emergency was declared. 
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24. In December, the focus of the analytics team was to monitor the impact of the 

restrictions. The short-term forecasting estimated a peak of hospitalizations the last week of 

December. The actual ICU peak was December 28 and non-ICU hospitalizations was two days 

later, December 30, 2020. 

25. In January 2021, as the cases and associated hospitalizations began to decrease and 

vaccines were being administered to healthcare workers and those in long term care facilities, 

variants of concern (VOC) began to emerge worldwide. As with the previous phases of the 

pandemic, the data was sparse and evolving. Evidence from other jurisdictions such as the UK, 

and projections using Alberta data showed VOCs could out compete the wildtype. The B.1.1.7 

variant was the most likely to be the dominant strain as it has a shorter incubation time and a 

longer infectious period. In one household in Alberta there was a two-day incubation and a 

parent who was isolating in the home was still able to transmit a COVID-19 VOC to a child in 

the home. Exhibit H details the epidemiology of the VOCs since their identification in Alberta. 

26. In February and March, the forecasting was revised to focus on the impact of the VOC 

and vaccinations on hospitalizations, particularly ICU. The model estimated that the impacts of 

rapid immunization would not immediately reduce the hospitalizations and ICU admissions as 

14-21 days is required to develop immunity. The data shows that approximately two weeks after 

restrictions were implemented May 5, 2021 the number of people in ICU peaked and then began 

to decrease. 

27. The third wave began in March 2021 and was the result of the increasing variants, 

specifically the B.1.1. 7, which has impacted younger and healthier Albertans compared to the 

previous waves. As more older Albertans receive the vaccine they are protected, leaving the 

remaining population as susceptible. At the same time, there was increasing non-compliance 

with following the restrictions and cases who decline to provide information to contact tracers. 

28. The peak of the third wave was April 30, 2021 when 2,408 cases were identified, the 

highest daily case count to date, with 665 outbreaks in schools, and 6,492 associated cases as a 

result of the VOCs. As with the previous waves targeted measures were implemented at first. On 

April 29th it was announced schools would close in areas with more than 350 active cases per 

100,000. Affected areas included the biggest municipalities in the province Edmonton, Calgary, 
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Fort McMurray, Red Deer, Grande Prairie, Lethbridge, and Airdrie. With the VOC in schools 

and activities surrounding schools, these had become areas of increased transmission. 

29. In summary, in responding to the COVID-19 pandemic: 

a. The evidence is constantly shifting. What we thought in March 2020 is different 

than in 2021. Scientific knowledge is not static, rather it is constantly updating 

based on new data. Epidemiologists use evidence, both local and from other 

jurisdictions to provide information to decision makers. 

b. The data and evidence were constantly assessed and provided to elected officials 

to be used as part of the decision-making process. 

c. Every time a COVID-19 transmits from one person to another, and virus 

replicates, there is an increasing likelihood of a new variant. Therefore, public 

health measures attempt to stop or slow transmission. Wave 2 allowed for 

uncontrolled spread which led to wave 3 driven by variants. 
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o Bachelor of Science (BSc) 2001. University of Calgary. Major in Cellular Molecular 
and Microbial Biology with a concentration on microbiology. 

o Adjunct Professor, University of Calgary, Department of Community Health 
Sciences, Faculty of Medicine. 

EMPLOYMENT HISTORY 
March 2021 - present 

Senior Manager- National Health Practice, EY 
o Lead large scale client engagements and the development of complex healthcare 

deliverables. 
March 2020 - March 2021 
COVID Analytics lead, Emergency Operations Centre, Alberta Health 

o Led the modelling and analytics work for the Government of Alberta for the 
COVID response providing data and evidence for decision makers. 

2018 - 2020 
Executive Director of Health System Planning & Quality, Alberta Health 

o Executive lead for the Alberta Surgical Initiative. 
o Led the development of a Health Service Planning Framework to align policy with 

healthcare delivery in Alberta. 
o Co-created a patient experience and quality review. 

2016- 2018 
Director, Health Evidence and Policy, Research and Innovation, Alberta Health 

o Led a data access initiative together industry, academics and government. 
o Redeveloped the provincial Heath Technology Assessment (HTA) framework. 
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o Collaborated in industry, academic and government partnerships. 
o Chaired the Health Research Ethics Harmonization committee. 

2016 
Director of Clinical Innovation & Strategic Foresight, Alberta Health 

o Led the development of the strategic plan of the Alberta Cancer Legacy 
Prevention Fund, including future allocations for the fund. 

o Created the Strategic Foresight plan for the Ministry. 
o Engaged with Strategic Clinical Networks in Alberta to support the intersection of 

policy and clinical practice. 

2012- 2016 
Manager Infectious Diseases Epidemiology, Alberta Health 

o Project manager for the development of notifiable disease reporting system. 
o Led the planning, and implementing administrative systems for surveillance. 

2010- 2012 
Epidemiologist, Alberta Health Services 

o Developed a province wide surveillance system for antimicrobial resistant 
organisms and surgical site infections. 

2009 - 2010 
Teaching Assistant, University of Calgary 

o Taught and supported the basic infection control course (MDSC 660) for infection 
control professionals. 

2008 - 2010 
Contract Position, Alberta Health and Wellness 

o Epidemiological lead for the development of province wide Clostridium difficile 
surveillance and integrated prenatal HIV programs. 

2005- 2008 
Manager Infectious Diseases Epidemiology, Alberta Health and Wellness 

o Developed standards and guidelines for Methicillin-resistant Staphylococcus 
aureus (MRSA) with extensive stakeholder engagement. 

MEMBERSHIPS & VOLUNTEERING 
o Canadian Immunization Research Network (CIRN) member 
o Health Standards Organization (HSO) Acute and Surgical Care Technical 

Committee 

o E4C--Board Member-2021-present 
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o Institute of Public Administration (IPAC) Edmonton Regional Group-Board 
Member-2017-2020 

o Edmonton Humane Society-Volunteer, 2017-present 
o Olympian Swim Club-Volunteer-Office Lead, 2016-2020 
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COVID-19- Outbreaks 

Places of Worship Outbreaks 
There have been 35 outbreaks identified that are associated with places of worship between March 1, 

2020-May 15, 2021 with a total of 704 directly associated cases. When separate outbreaks are spawned 

from the places of worship outbreaks, the secondary outbreak cases are not counted towards the place 

of worship outbreak. 

Variant 
Cases of Zone 

Date_ 9pened Outbreak Number concern ---
2020-03-19 2020-CAL-A058 21 0 Calgary 

2020-03-31 2020-CAL-A072 27 0 Calgary 

2020-08-15 2020-El-3563 105 0 Edmonton 

2020-08-15 2020-El-3561 19 0 North 
- - -

2020-08-27 2020-El-3813 167 0 Calgary 

2020-10-07 2020-El-4705 9 0 Edmonton 

2020-11-08 2020-El-5851 11 0 Edmonton 

2020-11-14 2020-El-5960 12 0 Calgary 

2020-11-17 2020-El-6062 2 0 Calgary 

2021-01-08 2021-El-242 8 0 South - - -
2021-01-27 2021-EDM-Blll 17 0 Edmonton 

2021-02-05 2021-El-1245 8 7 Central 

2021-02-16 2021-El-1637 11 0 Calgary 

2021-02-25 2021-El-1983 2 0 Calgary - -
2021-03-15 2021-El-2771 24 23 South 

2021-04-02 2021-El-3664 7 0 Calgary 

2021-04-09 2021-El-4042 5 s Edmonton 

2021-04-09 2021-El-4056 18 15 Central --
2021-04-14 2021-El-4354 5 0 Calgary 

2021-04-14 2021-El-4357 5 5 Central 

2021-04-14 2021-El-4370 10 0 North 

2021-04-14 2021-El-4363 7 7 Edmonton 
·-·· ·---

2021-04-15 2021-El-4418 11 11 Central 

2021-04-20 2021-El-4764 5 0 Edmonton 

2021-05-07 2021-El-6011 - 8 7 Calgary 

::m:n-ni;.nR 7071-Fl-finqq 9 3 Central 
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COVID-19 - Outbreaks 

Sports and Fitness Facility Outbreaks 
There have been thirty-three outbreaks associated with Sports and Fitness Facilities between March 1, 
2020-May 15, 2021 with a total of 501 directly associated cases. When separate outbreaks are spawned 
from the fitness outbreaks, the secondary outbreak cases are not counted towards the fitness outbreak. 
The overall attack rates at fitness facilities and within sport cohorts have an average attack rate of 24 
percent, but some outbreaks have had attack rates as high as 46 per cent. Fitness outbreaks have been 
reported in all zones in the province. 

Date Outbreak 
Variant 

Opened Number 
cases of Zone 

concern 

2020-07-17 2020-El-2993 65 0 Calgary 

2020-10-07 2020-El-4709 41 0 Edmonton 

2020-10-12 2020-El-4859 13 0 Edmonton -
2020-10-18 2020-El-5049 6 0 Calgary -
2020-10-29 2020-El-5408 18 0 Edmonton -- -- ~ ·--

2020-11-02 2020-El-5495 13 0 Calgary 

2020-11-03 2020-El-5559 17 0 Calgary 

2020-11-04 2020-El-5575 14 0 North 

2020-11-10 2020-El-5778 8 0 South ----
2020-11-12 2020-El-5874 7 0 Calga_!"Y 

2020-11-13 2020-El-5936 6 0 Central --
2020-11-15 2020-CAL-A108 7 0 Calgary 

-
2020-11-16 2020-El-6034 17 0 Calgary 

2020-11-18 2020-El-6159 12 0 Edmonton 

2020-11-22 2020-EDM-6076 4 0 Edmonton 

2020-11-28 2020-CAL-A114 24 0 5al~ry _ 

2020-11-29 2020-NOR-COS5 4 0 North 
-
2020-11-30 2020-CEN-202 8 0 Central 

--
2020-12-01 2020-El-6792 9 0 Calgary 

2020-12-05 2020-El-6991 3 0 North 

2020-12-06 2020-El-7002 10 0 Central 

2021-02-09 2021-El-1391 8 0 Calgary 

2021-03-17 2021-El-2840 5 0 Calgary 

2021-03-18 2021-El-2919 7 7 Calgary 

2021-03-19 2021-El-2969 17 13 Calgary 

2021-03-24 2021-CAL-A006 6 0 Calgary 

2021-03-27 2021-El-3384 6 2 ~~ary -
2021-03-28 2021-El-3420 35 34 ~al&~_r_y_ 
2021-04-12 2021-CEN-021 73 25 Central -
2021-04-20 2021-El-4743 14 13 Edmonton 

2021-04-23 2021-El-5049 11 9 Calgary 

2021-04-25 2021-El-5133 7 7 Central --
2021-04-26 2021-El-5218 6 5 Edmonton 
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COVID-19 - Outbreaks 

Example of a Dance Studio outbreak 

Outbreak index case is likely an instructor who was infected at a restaurant outbreak. 11 students infected with a 
voe, and at least 32 close contacts, plus 7 students who subsequently attended school while infectious. Instructors 
are masked, students attend in cohorts, distanced but unmasked. Room is cleaned between groups. Studio is 
lSOOsqft with 20ft ceilings. There are multiple secondary transmissions (infected close contacts), but not 
quantified here. 

- Exposed at Restaurant Outbreak - Attended studio 
Got Tested voe result 

Dance Friend Visit Symptoms Started 

* Date owner of dance studio was finally reached. Owner unaware of other positive individuals at this time. 

* Date outbreak investigation launched. 

+Close con11tts are household+ other 

Scho 

Close 
ol 
while Da Da Da Da Da Da Da Da 

Con ta In fee Oa Da Da Da Da Da Da Da Da y y y y y y y y 
cts• tlous 1 y2 y3 y4 yS y6 y7 y8 y9 10 11 12 13 14 15 16 17 

Ins true . J ~ ~ · tor 1+0 n/a ' 
Stude I• 

ntl 4+1 yes 

Stude .j -
nt 2 2+3 no 

Stude /', nt4 2+1 no -
Stude 
ntS 3+3 yes I 
Stude 
nt 3 3+0 yes .... 
Stude 1 nt 6 3+0 no ·' 
Stude ·- • nt 11 4+0 no j 

Stude 
nt8 ? yes 

Stude 
nt7 ? yes ' -
Stude l nt9 ? yes 

Stu de 
nt 10 3+0 yes 

3 

Da 
y 
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COVID-19 - Outbreaks 

Boxing Studio- Mixed Martial Arts School- School Cluster 

This outbreak began as part of a B.1.1.7 UK variant super-spreader cluster in Calgary in which one 

individual was infectious for 6 days prior to his symptom onset date and attended two boxing gyms. This 

facility has two locations, and COVID has been transmitted at both facilities. High intensity exercise was 

taking place despite restrictions. For a time at the beginning of the outbreak, no masking was occurring 

during weight training. Sparring was occurring at the facility, while masking was in place, clearly 

distancing was not possible. Disinfection was also inadequate and often there was less than 3m 

distancing between patrons. Additionally, no health screening was in place for staff. Currently there are 

35 cases between these two locations. 
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..A1.~ Govvcr,1ocn1 

Report Purpose Report sent to: I Frequency 
Morning ballpark Initial estimate of daily cases, CMOH, Incident I Daily (M-S) 
from Analytics lab tests, and positivity rate. Commander, 

Also includes active case ADM 
estimates and VOC's. 

Health Surveillance Full scale daily epidemiology All EOC staff and Daily (M-F) 
Epidemiology Report report - for internal use. key contacts 

Health Surveillance Daily reporting for external Communications, Daily (M-F) 
External Report posting/use. AHS, External 

contacts 
Health Minister I Daily sitrep including case Sent to EOC for I Daily (M-F) 
Situation Report counts, outbreaks, formatting and 

immunization data, VOC's and sending to 
any other pertinent information. distribution list 

including Minister 
of Health and all 
EMCC members 

Daily DM Report I Outbreak information for Deputy Minister Daily (M-F) 
(Outbreaks) continuing care, long term care 

and supported independent 
living. 

Immunization Report I Daily immunization rates for the DCMOH, Section Daily (M-F) 
province. Chiefs, 

Communications 
First Nations Report I Cases, outbreaks, and VOC's Included in EOD Weekly 

tracking for First Nations. report that is sent (Wednesdays) 
Provided to MOH, AHS, to Deputy 
FNIHB, AFNIGC, Treaty 8, Minister I 

Stoney Nakada Tsuut'ina Tribal 
Council, and other First Nations 
communities. 

Classification: Protected A 

COVID Response - Daily Reporting 
May 2021 

I Time of Day I Lead 
I S:OOAM I Data & Analytics 

Noon Data & Analytics 

Noon I Data & Analytics 

I 2:00PM I Data & Analytics 

Sent to I Operations & 
distribution Logistics 
list at 2:30pm 

~ byAHWEOC 
~(_~ 
~ 2:00PM Data & Analytics ---,. g.. 
~"" 

' Noon .. 
End of Day I 

I ,_..., -...... -a1llli--i~ : -. 
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Immunization Report Detailed daily immunization Deputy Minister 
rates for the province. 
Reconciliation and repackaging 
of Analytics Immunization 
Report; Vaccine Distribution 
Report; Appointments 
projection; 

Immunization details Summary of daily immunization EOC and 
for public posting rates for the province. Communications. 

CMOH Order Dashboard of CMOH Order Incident 
Enforcement Enforcement actions by week. Commanders 
Dashboard 
Vaccine Short-term projection of AHS Deputy Minister 
appointments I and Pharmacy vaccine 
utilization projection appointments (2 weeks) 
Vaccine Planning Medium-term projection of Deputy Minister 
Workbook vaccine utilization and 

immunization program based 
on known and anticipated 
supply; capacity to administer; 
and vaccination targets (1 
Quarter). 

End of Summary of EOC daily Deputy Minister 
Day Report activities. 

Classification: Protected A 

Daily (M-S) 

Daily (M-S) 

Weekly 
(Typically 
Wednesday) 
On Demand 
(Typically 
Daily) 
On Demand 
(Typically 
weekly) 

Daily (M-F) 

COVID Response - Daily Reporting 
May 2021 

14:00 EOC Operations 
I Logistics 
Section 

14:00 EOC Operations 
I Logistics 
Section 

N/A EOC Operations 
I Logistics 
Section 

N/A EOC Operations 
I Logistics 
Section 

N/A EOC Operations 
I Logistics 
Section 

8:00PM EOC Operations 
I Logistics 
Section 

Page 2of 2 
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t. Introduction 

ABSTRACT 

Since the COVID-19 outbreak in Wuhan City in December of 2019, numerous model pre­
dictions on the COVID-19 epidemics in Wuhan and other parts of China have been re­
ported. These model predictions have shown a wide range of variations. In our study, we 
demonstrate that nonidentifiability in model calibrations using the confirmed-case data is 
the main reason for such wide variations. Using the Akaike Information Criterion (AIC) for 
model selection, we show that an SIR model performs much better than an SEIR model in 
representing the information contained in the confirmed-case data. This indicates that 
predictions using more complex models may not be more reliable compared to using a 
simpler model. We present our model predictions for the COVID-19 epidemic in Wuhan 
after the lockdown and quarantine of the city on January 23, 2020. We also report our 
results of modeling the impacts of the strict quarantine measures undertaken in the city 
after February 7 on the time course of the epidemic, and modeling the potential of a 
second outbreak after the return-to-work in the city. 

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi 
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/). 

In early December 2019, a novel coronavirus, later labelled as COVID-19, caused an outbreak in the city of Wuhan, Hubei 
Province, China, and it has further spread to other parts of China and many other countries in the world. By January 31, the 
global confirmed cases have reached 9,776 with a death toll of 213, and the WHO declared the outbreak as a public health 
emergency of international concern (WHO, 2020). By February 9, the global death toll has climbed to 811, surpassing the tot.al 
death toll of the 2003 SARS epidemic. and the confirmed cases continued to climb globally. As governments and public 
agencies in China and other impacted countries respond to the outbreaks, it is crucial for modelers to estimate the severity of 
the epidemic in terms of the total number of infected, total number of confirmed cases, total deaths, and the basic repro­
duction number, and to predict the time course of the epidemic, the arrival of its peak time, and total duration. Such in­
formation can help the public health agencies make informed decisions. 

• Corresponding author. 
E-mail addresses: wroda@ualberta.ca (W.C.Roda), marie.varughese@gov.ab.ca (M.B. Varughese), donglin3@ualberta.ca (D. Han), myli@ualberta.ca (M.Y. 

Li). 
Peer review under responsibility of KeAi Communications Co. Ud. 
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Since the start of the outbreak in Wuhan, several modeling groups around the world have reported estimations and 
predictions for the COVID-19 (formerly called 2019-nCov) epidemic in journal publications or on websites, for an incomplete 
list see (Bai et al., 2020; Imai, Dorigatti, Cori, Riley, & Ferguson, 2020; Read, Bridgen, Cummings, Ho, & Jewell, 2020; Shen, 
Peng, Xiao, & Zhang, 2020; Tang et al., 2020b, a; Wu, Leung, & Leung, 2020; You et al., 2020; Yu, 2020; Zhao et al., 2020). 
The modeling results have shown a wide range of variations (Cyranoski, 2020): estimated basic reproduction number varies 
from 2 to 6, peak time estimated from mid-February to late March, and the total number of infected people ranges from 
50,000 to millions. Why is there such a wide variation in model predictions, even among predictions made using transmission 
models based on either the SIR or SEIR framework? We attempt to address this variability issue in our study. 

A simple answer for the wide range of model predictions might be that there was too little information at the beginning of 
the outbreak, especially before January 23 when Wuhan was quarantined and locked down, and that there was a lack of 
reliable data, except for the confirmed case data that could be used for model calibration. Rigorous model calibration 
methods, including maximum likelihood methods and the Bayesian inference based MCMC methods, already take into 
consideration uncertainties in data by allowing the data at each time point to follow a probability distribution with the mean 
given by the assumed model and the variance 't given by the assumed probability distribution, where the variance may 
depend on the mean. The lack of data, as we will demonstrate, is a more serious concern for modellers. A key issue that can 
explain the variability in model predictions is understanding how the available data (confirmed cases) compares with model 
predictions. Confirmed cases are people with symptoms who made contact with a hospital, got tested, and whose infection of 
COVID-19 was confirmed by DNA or imaging tests. The infected compartment in by transmission models represents all people 
who are infected. These include people who may or may not have symptoms and contacts with a hospital, as well as people 
with confirmed laboratory tests and those who are misdiagnosed. In this sense, confirmed cases (data) are only a fraction of 
the total infected population (model predictions). A metaphor of an iceberg best represents the difference between data and 
model predictions. The entire iceberg represents the total infected population, and the tip of the iceberg above the sea surface 
represents the case data. The part of the iceberg hidden under the water represents the infected people that are unknown to 
public health surveillance and testing; often called the hidden epidemic. The difference between cases and infections can be 
measured by the case-infection ratio p, between the newly confirmed cases and the number of infected people, or as a 
surrogate, the ratio between the cumulative confirm cases and the cumulative number of infected people. 

The case-infection ratio p can vary widely for different viral infections that spread through air droplets and close contacts. 
FortheSARS epidemic, the ratio pwas in the range ofl/5 - 1/2 (Chowen et al., 2004; Gumel eta!., 2004; Lipsitch et al., 2003; 
Zhang et al., 2005). In contrast, for seasonal influenza in 2019-2020, the ratio p can be as small as 1/100, based on estimates 
from the US CDC (US CDC, 2020). Why should this be a problem for the modellers? In model calibration, in order to estimate 
key model parameters such as the transmission rate ~. by fitting the model output to the confirmed cases data, it is necessary 
to discount the total number of infectious people, I(t), from the model prediction, by the case-infection ratio p to appro­
priately predict confirmed case data. For each value of the ratio p, a corresponding value for the transmission rate ~ can then 
be estimated by fitting the model to data, which in tum determines the basic reproduction number sr0, the scale of the 
epidemic, as well as the peak time. Given the potential wide range for the case-infection ratio p of the COVID-19, the esti­
mated transmission rate ~ has a wide range, and hence the wide range of reported model predictions. 

In modeling terms, given the confirmed-case data, there is a linkage between the model parameter p and the transmission 
rate ~. and potentially also with other model parameters. While many different combinations of p and ~ can show good fit to 
the data, they can produce very different model predictions of the epidemic. This is known as nonidentijiability in the 
modeling literature, see e.g. (Lintusaari, Gutmann, Kaski, & Corander, 2016; Raue et al., 2009; van der Vaart, 1998). It means 
that a group of model parameters can not be uniquely determined from the given data during model calibration. Different 
choices of parameter values with the same good fit to the data can lead to very different model predictions. The ways in which 
nonidentifiability is addressed in the model calibration process greatly influences the reliability of model predictions. 

The standard nonlinear least squares method is known to be ill suited to detect or address the nonidentifiability issue, 
since it relies on a rudimentary optimization algorithm. These rudimentary optimization algorithms attempt to find a global 
minimum of the given objective function, but there are infinitely many global minima given nonidentifiability. Standard 
Markov chain Monte Carlo (MCMC) procedures based on Bayesian inference often fail to converge to the target posterior 
distribution in the presence of non identifiability, and can produce best-fit parameter values with unreliable credible intervals, 
since these often relies on elementary MCMC algorithms. Elementary MCMC algorithms converge very slowly given a very 
skewed posterior distribution. In our study, we used an improved model calibration method using Bayesian inference and 
affine invariant ensemble MCMC algorithm that can ensure fast convergence to the target posterior distribution when facing 
nonidentifiability, and provide more reliable credible intervals and model predictions. 

Another important factor that can significantly influence model predictions is the choice of a suitable model to describe 
the epidemic under study: a more complex or simpler model. A complex model incorporates more biological and epide­
miological information about the epidemic and is more biologically realistic. A drawback of a complex model is that it requires 
more model parameters to be estimated compared to a simpler model. Given the dataset, such as the confirmed case data of 
COVID-19, increased number of parameters in a complex model that are unknown and need to be estimated by model fitting 
can lead to a greater degree of uncertainty in model predictions. In choosing an appropriate model, it is important to draw a 
balance between biological realism and reducing uncertainty in model predictions, and this choice can significantly influence 
the reliability of model predictions. The modeling procedure to determine the right balance is model selection using various 
information criteria, for instance the Akaike Information Criteria (AIC) for nested models (Akaike, 1973; Sugiura, 1978). 
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In our study, we considered both SEIR and SIR models for model predictions and applied model-selection analysis. For the 
given dataset of confirmed cases, we determined that the SIR model is a better choice than the SEIR model, and more likely 
than models that are more complex than an SEIR model (Section 3 ). Our study focused on the development of the outbreak in 
Wuhan city after the quarantine and lockdown Oanuary 23, 2020), given the reliability of confirmed case data and definition 
during this period and the simplicity in our predictions and analysis. We briefly outline in Section 2 the methodology for 
model calibration using an improved procedure based on Bayesian inference and model selection method using Akaike In­
formation Criteria. In Section 4, using the SIR model, we illustrate the linkage between the transmission rate and case­
infection ratio, and the presence of nonidentifiability when only the confirmed-case data is used for model calibration. In 
Section 5, we present detailed results of the SIR model calibration and our model predictions, including the distribution of 
peak time, prediction interval of future confirmed cases, as well as the total number of infected people. In Section 6, we 
estimate the impact of further control measures recommended in Wuhan after February 7 and predicted the changes in peak 
time under different assumptions on the reduction of transmission achieved by these measures. In Section 7, we estimated 
the impact of timing the return to work on the course of the epidemic, in terms of peak time, peak values, and the duration of 
the epidemics. Our results are summarized in Section 8. 

2. Model c:allbration and model selection 

In this section, we give a brief description of a model calibration method based on Bayesian inference and the method of 
model selection using Akaike Information Criterion (AIC). For more details the reader is referred to (Portet, 2020; Roda, 2020). 
Other model calibration procedures using nonlinear squares or more general maximum likelihood methods are not described 
here, and we refer the reader to (Rossi, 2018). Model selection methods using other information criteria can also be used, see 
e.g. (Burnham & Anderson, 2002). 

2.1. Affine invariant ensemble Markov chain Monte Carlo algorithm for model calibration 

Mathematical Model Consider a mathematical model given by a system of differential equations: 

x'=f(x), (1) 

where x = (x1, · • ·, xk) denotes the vector of state variables,f (x) = (/1 (x), · ··fk(x)) the vector field. We let u e IR"1 be the vector 
of all model parameters, which often include initial conditions Xo = (Xo1, • · • ,J!ok)· We assume that there exists a unique so­
lution x = x(u, t) for each given u. 

Data. Data is often given on the observable quantities, such as newly confirmed cases, which are linear or nonlinear 
combinations of the solutions x(u, t) in the form: 

Y=Y{W, t) = Y(X(U, t), v), 

whereve1R"2 are parameters in the observablesyand w = (u,v)elR", n = n1 + n2, is the vector of all model parameters to be 
estimated. Furthermore, the dataset is collected at N time points t1 ,t2 , ···,tN. We will fit the model outputs 

Yi = Y{W, t1) = Y(X(U, t1 )1 v), i= 1,2, ···,N, 

to the time series dataset 

likelihood functions. In order to account for noise in the data, we let the probability of observing D1 at time t1 be given by 
fi(D1). with meany1 and variance q1 = u~ = 1 /Tio i = 1, 2, · · · ,N. Common probability distributions used for this purpose include 
the normal distribution, Poisson distribution, and negative binomial distribution. In our Bayesian inference, the variance q1 = 
1 /Ti in the noise distribution is also estimated from the data, giving us an accurate posterior distribution and accurate credible 
intervals for the estimated parameters. The entire set of parameters to be estimated includes model parameters u, parameters 
v in the observable function y, and the variances q = (1/T1,1 /T2, ···, 1 /TN), and is denoted by 

O= (U,v,q). 

We consider the likelihood function 

where C is a constant independent of 0 used to simplify the likelihood function (Kalbfleisch, 1979). 
Bayesian framework. The Bayesian framework assumes that a probability model for the observed data D given unknown 

parameters 0 is P(DjO), and that 0 is randomly distributed from the prior distribution P(O). Statistical inference for 0 is based on 
the posterior distribution P(OiD). Using Bayes Theorem we obtain 
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P(OID) = P(DIO)P(O) = P(DIO)P(O) oc L(O)P(O) = 1r(OID), 
P(D) I P(DIO)P(O)dO 

Cl 

where Cl is the parameter space of 0 and L( 8) is the likelihood function. Constant P(D) = J0 P(DIO)P( O)dO is used to normalize 
the posterior distribution P(IJID) (Chen, Shao, & Ibrahim, 2000). The unnormalized posterior distribution is given by 7r(OID) = 
L(IJ)P(IJ). The Bayesian framework is very useful for statistical inference that occurs in mathematical modeling since it allows 
utilization of the prior information about the unknown parameters in the literature. Epidemiological information about the 
infectious disease can often inform a general range for the parameters to be estimated, and the uniform distribution is 
typically chosen as the prior distribution in such a case. 

Markov chain Monte carto algorithms. Markov chain Monte carlo {MCMC) algorithms are used to approximate a 
posterior distribution of parameters by randomly sampling the parameter space (Lynch, 2007). In MCMC algorithms, a new 
vector of parameter values IJ(t) is sampled iteratively from the posterior distribution, based on the previous vector IJ(t- lJ, until 
a sample path (also called a chain or walker) has arrived at a stationary process and produces the target unnormalized 
posterior distribution. Commonly used MCMC algorithms include the Metropolis-Hastings algorithm and Random-Walk 
Metropolis-Hastings algorithms (Chen et al., 2000). 

In our study, we used an improved MCMC algorithm, the affine invariant ensemble Markov chain Monte Carlo algorithm, 
which has been shown to perform better than Metropolis-Hastings and other MCMC algorithms, especially in the presence of 
non identifiability. The algorithm uses a number of walkers and the positions of the walkers are updated based on the present 
positions of all walkers. For details on this algorithm, we refer the reader to (Goodman & Weare, 2010; May, 2015) and recent 
lecture notes on this topic (Roda, 2020). 

2.2. Method of model selection using Akaike information criterion 

When using mathematical models to explain data that has been formed by an underlying disease process, the principle of 
parsimony should be used to select a suitable model. A parsimonious model is the simplest model with the least assumptions 
and variables but with the greatest explanatory power for the disease process represented by the data Uohnson & Omland, 
2015 ). This principle is also reflected in a well known quotation: "Models should be as simple as possible but not simpler." This 
quotation is often ascribed to A. Einstein. The model selection method using Akaike Information Criterion takes into account 
both how well the model fits the data and the principle of parsimony. 

Akaike lofonnation Criterion (AIC). Let L(iJMLE) be the maximum likelihood value achieved at a best-fit parameter value 
(jMLE· Let K be the number of parameters to be estimated in a model, and N be the number of time points where data are 
observed. The Akaike Information Criterion (AIC) is defined as (Akaike, 1973): 

AIC= - 2ln(L(OML£)) + 2K. 

This definition should be used when K <N/40, namely when the number of time points N is large in comparison to the 
number of parameters. When K > N / 40, namely when the number of parameters is large in comparison to the number of time 
points, the following corrected AIC should be used (Sugiura, 1978): 

AIC =AIC 2K(K + 1) 
c + N - K - 1" 

We note that in the Bayesian inference based calibration, the unnormalized posterior distribution 7r( IJID) is equal to the 
product of the likelihood function L(IJ) and the prior distribution P(IJ). The Akaike information criterion can be applied if 
uniform prior distributions are used for each parameter, since 1r(BMLE) = 'YL(BMLE), where y is a constant. 

Model selection using AIC. When several nested models, each having a different level of complexity, are considered as 
candidates for the most suitable model, AIC values can be computed for each model, and the model associated with the 
smallest AIC value is considered the best model. The difference of AIC1 value of model i with the minimum min,AIC1: 

i1i = AICi - minAJC1. 
I 

This measures the information lost when using model i instead of a model with the smallest AIC value. When A1 is larger, 
model i is Jess plausible. 

Useful guidelines for interpreting A1 for nested models are as follows (Burnham & Anderson, 2002): 

• If 1 ~ A1 ~ 2, model i has substantial support and should be considered. 
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• If 4 :::;; t:.1 :::;; 7, model i has less support. 
• If t:.1>10, model i has no support and can be omitted. 

When a large number of models are under consideration or the models are not nested, the model selection rules are 
different We refer the reader to recent lecture notes (Portet, 2020) for an introduction to model selection. 

3. Model selection analysis for an SEIR and an SIR model 

We used both SElR and SIR frameworks to model the COVID-19 epidemic in Wuhan, and we applied model selection 
analysis to decide which framework is more parsimonious. 

3.1. The models 

In our SIR and SEIR models, the compartment S denotes the susceptible population in Wuhan, compartment 1 denotes the 
infectious population, and R denotes the confirmed cases. In the SEIR model, a latent compartment Eis added to denote the 
individuals who are infected but not infectious. The latency of COVID-19 infection is biologically realistic due to an incubation 
period as long as 14 days; newly infected individuals may not be infectious while the virus is incubating in the body. Here we 
note the difference between the latent period, which is the period from the time an individual is infected to the time the 
individual is infectious, and the incubation period, which is the period between the time an individual is infected to the time 
clinical symptoms appear, which include fever and coughing for COVID-19. For SARS, infected individuals become infectious 
on average two days after the onset of symptoms WHO (2003); so, the SARS latent period is on average longer than the 
incubation period. For COVID-19, evidence has shown that infected individuals can be infectious before the onset of symp­
toms (Bai et al., 2020), but the length of the latent period is largely unknown. In comparison to the SIR model, the SEIR model 
has the strength of being more biologically realistic, but the SEIR model has the drawback of having two additional unknown 
parameters: the latent period and the initial latent population. 

The transfer diagrams for both models are shown in Fig. 1. The biological meaning of all model parameters are given in 
Table 1 and Table 2. A key assumption in both models is that deaths occurring in the S, E, and 1 compartments are negligible 
during the period of model predictions. 

( 4 months). Since we use the newly confirmed case data for model calibration, which is matched to the pl term in both 
models, the death term in the R compartment has no effect on our model fitting. The systems of differential equations for each 
model is given below: 

S =-PIS 
r =pis - (p + µ. )I 
R' = pl - dR 

S =-PlS 
E' = PIS - eE 
I' = eE - (p + µ. )I 
R' = pl - dR 

32. Model calibmtion from the data 

(2) 

(3) 

For data reliability, the data used for both models (2) and (3) is the newly confirmed cases in Wuhan city from the official 
reports from January 21 to February 4, 2020 (National Health Commission of the People's Republic of China, 2020). It is 
common to use a Poisson or negative binomial probability model for observed count data. When the mean of a Poisson or 
negative binomial distribution is large, it approximates a normal distribution. Since the newly confirmed cases are 
approaching large values quickly, the distribution of the count data will be approximately normal and the probability model 
for the observed count data in our study was assumed to a normal distribution with mean given by pl and variance given by 1 / 
r. There are four parameters to be estimated in the SIR model from data: transmission rate J3, diagnosis rate p, the initial 
population size lo forthe compartment! onjanuary21, 2019 (t = 0), and the variance q = 1/r forthe noise distribution in the 

(a) An SIR Model (b) An SEIR ?\lode! 

Fig. 1. Transfer diagrams for an SIR and an SEIR model for COVID-19 in Wuhan. 
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'hllle 1 
Parameters in the SIR model (2) and their estimations from the confirmed case data. 

II 
p 
µ 
lo 
o; 

lllble 2 

Epidemiological Meaning 

Transmission rate 
Diagnosis rate 
Recovery rate 
Size of I on 01 /20/2020 
1 /T is the variance of data noise 

Best-fit Value 

9.906e-8 
0.24 
0.1 
245 
2.62e- 5 

Parameters in the 5EIR models and their estimations from the confirmed case data. 

Epidemiological Meaning Best-fit Value 

II Transmission rate 8.68e- 8 
p Diagnosis rate O.D18 
µ Recovery rate 0.1 
B Transfer rate from E to 1 0.631 

&> Size of E on 01 /20/2020 1523 
lo Size of I on 01/20/2020 3746 
o; 1 /-r is the variance of data noise 2.61e- 5 

95% Credible Interval 

(7.02e- 8, 2.09e-7) 
(0.064, 0.901) 
fixed value 
(65,890) 
(1 .43e-5, 4.33e-5) 

95% Credible Interval 

(8.20e-8, 1.26e-7) 
(0.016,0.024) 
fixed value 
(0.263,0.78) 
(3444, 4682) 
(3278, 4171) 
(1.43e-5, 4.13e-5) 

Prior 

U(le-10, le-5) 
U(0.01, 1) 
source (You et al., 2020) 
U(l,8400) 
U(1 e-8, 100) 

Prior 

U(le-10, le-5) 
U(0.01, 1) 
source (You et al., 2020) 
U(0.07, 1) 
U(l, 1700) 
U(3200, 6700) 
U(le-8, 100) 

data. There are six parameters to be estimated for the SEIR model: transfer rate e from E to I, the initial population size Eo for 
the latent compartment Eon January 21, 2019, and ~. p, /0 , and q = 1 /r. Since it was announced at a news conference by the 
mayor of Wuhan on January 23 that 5 million people have left the city by that date, we set the total population N = S+ I+ R in 
Wuhan on January 21 to the conservative estimate of 6 million. 

We used the same uniform distributions over the initial range of parameters as the priors for both models, as given in 
Tables 1 and 2. The affine invariant ensemble Markov chain Monte Carlo algorithm was used to produce posterior distri­
butions for all estimated parameters. From these posterior distributions, we obtain the best-fit values and the 95% credible 
intervals, as given in Table 1 for the SIR model (2) and in Table 2 for the SEIR model (3). 

33. Comparing SIR and SEIR models 

Using the calibration results for both the SIR and SEIR models in Section 33, their corrected Akaike Information Criterion 
AICc are calculated as 174 and 186, respectively. The difference A= 186 - 174 = 12 is sufficiently large and this implies that 
using the SEIR model (3) will produce a significant loss of information in comparison to using the SIR model (2). Accordingly, 
our further investigation will be carried out using the SIR model (2). 

4. Nonldentiftabillty: linkage between transmission rate P and diagnosis rate p 

Based on our calibration results of the SIR model in Section 33, we detected a linkage between the transmission rate ~and 
the diagnosis rate p. In Fig. 2 (a), we show the projection of the unnormalized posterior distribution in the ~-p parameter 

(a) Unnormalized posterior distribution over {3-p 

space 
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(b) A curve of most likely parameters 

Fig. 2. Linkage between transmission rate II and diagnosis rate p. 
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(b) /3 = 7.34E - 8, p = 0.084 

Fig. 3. Model projections using two likely IJ-p combinations. corresponding to two endpoints on the cuive in Fig. 2 (b ). Day 0 is January 21, 2020. 
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space. It shows that the largest probability are concentrated along a flat strip rather than on a single point Correspondingly, as 
shown in Fig. 2 (b ), a curve in the 13-P parameter space can be determined such that every point on the curve has approxi­
mately the same large probability. The linkage between two or more parameters implies the following: (1) the best-fit 
parameter values are effectively not unique; and (2) there is a continuum of parameter values that cause the model to fit 
the data approximately equally as well. This phenomenon is often referred to as nonidentifiability in the modeling literature. 

To further illustrate the significant impact of nonidentifiability on model predictions, we choose two endpoints on the 
curve in Fig. 2 (b), with respective values ({J,p) = (2.09e-7,0.909) and ({J,p) = (7.34e-8,0.084), and we plotted the corre­
sponding projected new cases in Fig. 3(a) and (b), respectively. Fig. 3 shows that the peak height, as well as the duration and 
scale of the epidemic are different in the two projections, even though both choices of parameter values are effectively equally 
likely to produce the best fit between the model outcomes and the data. 

A striking feature in Fig. 3 is that the peak time of the two different projections are almost identical. This illustrates that, 
unlike the peak value, the peak time of the epidemic is insensitive to small parameter changes. This important property of the 
peak time will also be observed in later sections. 

We further note that the diagnosis rate p is the case-infection ratio that is used to discount of the number of infected 
individuals l(t) to properly predict the newly confirmed cases. The linkage between~ and p reflects the dependency of the 
transmission rate and the case-infection ratio, and hence the scale of the epidemic. We believe that this nonidentifiability is 
the reason for the wide variability in published model predictions of COVID-19 epidemic. 

To reduce the impact of nonidentifiability in model calibration from data, one approach is to search for more independent 
data, including clinical, surveillance, or administrative data, and from published literature, that can be used for model cali­
bration. This approach is often difficult when facing an outbreak of unknown pathogens that occur in real time such as SARS in 
2003 and the current COVID-19. Another approach is to adopt better inference methods and model fitting algorithms to 
narrow done the otherwise large confidence or credible intervals. Our fitting procedure using Bayesian inference and the 
affine invariant ensemble Markov chain Monte Carlo algorithm was able to achieve this objective. 

5. Baseline predictions for Wuhan and three scenarios 

Our baseline predictions for Wuhan are prediction intervals produced by randomly sampling the posterior distribution. 
The best-fit parameter values and credible intervals are shown in Table 1. The Bayesian inference used the newly confirmed 
cases for Wuhan contained in the official reports from January 21 to February 4, 2020. This is the period during the lockdown 
and travel restrictions in Wuhan, but before the further control measures that were undertaken in Wuhan after February 7, 
2020, including the drastic increase in the available hospital beds and the door-to-door visits used to identify and quarantine 
suspected cases. These projections show our estimation for the hypothetical epidemic in Wuhan if further control measures 
after February 7 were not implemented. 

In Fig. 4(a) and (b), we show the distributions of the projected peak time and the estimated values of the control 
reproduction number .9f c· In Fig. 4 ( c ), we show the projected time course of newly confirmed cases in Wuhan together with 
its 95% prediction interval. The fit of our model predictions and the newly-confirmed case data is shown for the period 
between January 21 to February 4 in Fig. 4 (d). Based on these projections, if the more restrictive control measures after 
February 7 in the city were not implemented, the most likely peak time would have occurred on February 27, 2020, with the 
95% credible interval from February 23 - March 6. The median value of .9fc is 1.629 with the first quantile 1.414 and the third 
quantile 1.979. By our projection, without the strict quarantine measures after February 7, the peak case total would reach 
approximately 120, 000, and the epidemic in Wuhan would not be over before mid-May of 2020. 
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Ag. 4. Distributions of estimated peak time (a) and control reproduction number file (b) for COVID-19 epidemic in Wuhan after lockdown. The dashed lines 
represent the 95% prediction intervals for the time course of COVID-19 epidemic in Wuhan after lockdown (c) and ( d). Day 0 in simulations is set at January 21, 
2020. 

At the time of this manuscript. the consensus among medical experts is that the basic reproduction number 91'0 near the 
beginning of the COVID-19 outbreak in Wuhan is around 2. Our result in Fig. 4 (b) is comparable with earlier estimates and the 
current consensus. It also shows that. even without the more restrictive control measures in Wuhan undertaken after 
February 7, the lockdown and travel restrictions in the city had slowed down the transmission and reduced the basic 
reproduction number to a control reproduction number 91'c with a mean value 1.629. We will estimate the impact of the more 
restrictive control measures in Section 6. 

The baseline prediction intervals are computed over a large credible interval of the diagnosis rate p1 (0.0637,0.909), which 
represents a wide range of assumptions on the case-infection ratio and the scale of the epidemic in Wuhan. We further 
restricted the parameter p to three narrower ranges: (0.02,0.03), (0.05,0.1), and (0.2, 1), and recalibrated the SIR model (2) 
with each of the p ranges. The resulting predictions for newly confirmed cases are shown in Fig. 5. 
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Ag. 5. Model predictions of time courses of COVID-19 epidemic in Wuhan with three different ranges of diagnosis rate p: (0.02,0.03), (0.05,0.1 ), and (0.2, 1 ). Day 
0 in the simulations is set at January 21, 2020. 
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1'fg. 6. Predictions of the COV!D-19 epidemic in Wuhan with more strict quarantine measures afterl'ebruary 7, 2020. Impacts of reductions in transmission rate P 
and increases in diagnosis rate pare shown in (a). Impacts of only reducing the transmission rate (b) or only increasing the diagnosis rate (c) are also shown for 
comparison purposes. 

In Fig. 5, different p ranges have resulted in significant variations in the peak value of cases and the duration of the 
epidemic. In contrast. the projected peak ti.mes are very similar in all three cases, which further demonstrates that the peak 
time is insensitive to changes in parameters. 

6. Impacts of more strict quarantine measures in Wuhan after February 7 

After February 7, 2020, Wuhan implemented more strict quarantine measures that included the following: locking down 
residential buildings and compounds, strict self quarantine for families, door-to-door'inspection for suspected cases, quar­
antining suspected cases and close contacts in newly established hospitals and other quarantine spaces including vacated 
hotels and university dormitories. The goal of these measures was to reduce transmissions within family clusters and resi­
dential compounds. These measures have a direct impact on two parameters in our SIR model (2 ): reducing the transmission 
rate ~and increasing the diagnosis rate p. It is difficult to estimate the exact impacts on these parameters by these measures. 
We incorporated several likely scenarios of the effects of these measures by adjusting our baseline estimates of~ and p and we 
plotted the resulting time courses in Fig. 6. 

In Fig. 6 (a), we see that a combination of a 10% reduction in the transmission rate~ and a 90% increase in the diagnosis rate 
p can effectively stop the epidemic in its tracks, force the newly diagnosed cases to decline, and significantly shorten the 
duration of the epidemic. 

7. Potential of a second outbreak in Wuhan after the return-to-work 

With newly diagnosed cases on the decline in Wuhan and other cities in China since February 14, an urgent task for the 
authorities is to decide when to allow people to go back to work. Without lifting the ban on traffic in and out of the city, we 
tested three hypotheses of allowing people to return to work in Wuhan at three different dates: February 24, March 2, and 
March 31. As shown in Fig. 7, our results predict a significant second outbreak after the return-to-work day. 

8. Condusions 

The COVID-19 epidemics have presented China and many other countries in the world with an unprecedented public 
health challenge in the modem era, with a significant impact on health and public health systems, human lives and national 
and world economies. Mathematical modeling is an important tool for estimating and predicting the scale and time course of 
epidemics, evaluating the effectiveness of public health interventions, and informing public health policies. The focus of our 
study is to demonstrate the challenges facing modelers in predicting outbreaks of this nature and to provide a partial 
explanation for the wide variability in earlier model predictions of the COVID-19 epidemic. 

Our study focused on the COVID-19 epidemic in Wuhan city, the epicentre of the epidemic, during a less volatile period of 
the epidemic, after the lock down and quarantine of the city. By comparing standard SIR and SEIR models in predicting the 
epidemic using the Akaike Information Criterion, we showed that, given the same dataset of confirmed cases, more complex 
models may not necessarily be more reliable in making predictions due to the larger number of model parameters to be 
estimated. 

Using a simple SIR model and the dataset of newly diagnosed cases in Wuhan for model calibration, we demonstrated that 
there is a linkage between the transmission rate ~ and the case-infection ratio p, which resulted in a continuum of best-fit 
parameter values, which can produce significantly different model predictions of the epidemic. This is a hallmark of non­
identifiability, and the root cause for variabilities in model predictions. The nonidentifiability should not be interpreted as a 
shortcoming of transmission models; neither is it caused by the limited number of time points in data. Rather, it is caused by 

32



280 W.C Roda et aL /Infectious Disease Modelling 5 (2020) 271-281 

.. • "( 
·1 I_ .::.=;:,~'-l-1 

1--~ ............ ot><.O'­

-~--"'*~· ·aw-. 

I -e-e-1_.i._z_ 
~--flo:h l·l­

--~Foo-:-...~ 

-~--··I-

rlf 
r: jf\!\ l I ' • 

t :' \\ 
. I ~~ 

(a) (b) (c) 

Ag. 7. Model predictions of time courses of COVID-19 epidemic in Wuhan with return to work on (a) Februaiy 24, (b) March 2, and (c) March 31, 2020. 

the lack of datasets that are independent of the conirmed cases to allow modelers to produce independent estimates of~ and 
p. The reliability in model predictions depends on how rigorously the nonidentifiability is addressed in model calibration and 
on the choice of parameter values. 

We demonstrated that Bayesian inference and an improved Markov chain Monte Carlo algorithm, the affine invariant 
ensemble Markov chain Monte Carlo algorithm, can significantly reduce the wl<i~ parameter ranges in the uniform prior and 
produce workable credible intervals, even in the presence of nonidentifiability. We showed that the estimated credible in­
tervals for the parameters are sufficiently small to allow our credible interval for the peak time to fall within a week. We have 
further demonstrated that the peak time of the epidemic is much less sensitive to parameter variations than the peak values 
and the scale of the epidemic. This was also observed in our previous work on predicting seasonal influenza for the Province 
of Alberta. 

We estimated the impact of the Wuhan lockdown and traffic restrictions in the city after January 23 and before February 6, 
2020. We show that ifthe more restrictive control and prevention measures were not implemented in the city, the epidemic 
would peak between the end of February and first week of March of 2020. Our results can be used to inform public health 
authorities on what may happen if the more strict quarantine measures after February 7 were not taken. 

When the more restrictive measures are incorporated into our model, including the lock down of residential buildings and 
compounds, the door-to-door search of suspected cases, and the quarantine of suspected cases and their close contacts in 
newly established hospitals and quarantine spaces, we showed that these measures can effectively stop the otherwise surging 
epidemic in its tracks and significantly reduce the duration of the epidemic. These findings provide a theoretical verification 
of the effectiveness of these measures. 

We further considered the impact of the return-to-work order on different dates in February and March on the course of 
the outbreak. Our results show that a second peak in Wuhan is very likely even if the return-to-work happens near the end of 
March 2020. This may serve as a warning to the public health authorities. 
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COVID-19 - Modelling Predictions 

Spring 2021 Projections 
In the following graph predicted the impact of a third wave on ICU admissions without restrictions 

implemented on May 5th, 2021. The peak number of people in ICU was May 18th, 2021 when there were 
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Fall 2020 Projections 
The following graph predicted the impact of restrictions implement November 24th and varying the 

duration of the restrictions, using data up to October 1, 2020. 
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COVID-19 - Modelling Predictions 

The revised estimates were based on additional simulations and data up to October 31, 2020. The 

estimated peak for cases was December 15, 2020 wit_h 2,023 cases and the actual was December 13, 

2020 with 1,875. The hospitalizations due to COVID were estimated to peak at 648 on December 27, 

2020 in fact the peak was December 30, 2020 with 905 hospitalizations. Some of the difference in actual 

and predicted hospitalizations were due to the outbreaks in acute care. COVID related ICU were 

estimated to peak at 168 on December 29, 2020 and the peak was December 28, 2020 with 154 patients 

in the ICU. 

Spring 2020 Projections 
Please see https://www.alberta.ca/assets/documents/covid-19-case-modelling-projection.pdf 

https://www.alberta.ca/assets/documents/covid-19-case-modelling-projection-april-28.pdf 
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Executive Summary The success of public health measures, implemented 

over the past century, have greatly contributed to the 

decrease of communicable disease incidence in Alberta. 

Highly effective immunization programs and treatments 

have virtually eliminated communicable diseases such as 

measles, diphtheria and polio, while smallpox has been 

completely eradicated. Measures instituted to improve the 

quality of food, water, and sanitation have contributed to 

a marked decrease in enteric diseases such as giardiasis 

and typhoid. 

Despite the drop in communicable disease incidence as a 

whole, the occurrence of some diseases such as sexually 

transmitted infections (STl's), are on the rise. Increases 

in international travel, coupled with new emerging 

pathogens, such as SAAS and West Nile virus, highlight 

the importance of continued surveillance and constant 

preparation to detect and respond to new, emerging and 

re-emerging communicable disease threats. 

Historical Notifiable Diseases in Alberta - 1919-2014 C 2015 Govenvnent of Abe11a 
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Introduction 

e 2015 Government of Alberta 

Diseases that are notifiable in Alberta are defined in the 

Public Health Act, Communicable Diseases Regulation 

for the province and must be reported to the Office of the 

Chief Medical Officer of Health (OCMOH). These diseases 

are notifiable because they have one or more of the 

following characteristics: 

• they cause serious illness, 

• they have the potential to infect many people or 

• they can be controlled or prevented by appropriate 

interventions. 

There are several categories of notifiable diseases: 

• enteric illnesses, 

• vaccine preventable diseases, 

•sexually transmitted infections, 

• blood-borne pathogens, 

• respiratory illnesses, 

• syndromic illnesses, 

• environmental and zoonotic illnesses. 

This report links the various roles of the Health System 

Accountability and Performance Division by providing a 

historical account of selected notifiable communicable 

diseases in Alberta and identifying trends in incidence, 

thus allowing public health professionals to formulate a 

plan for future disease prevention. Selected communicable 

diseases illustrated on the following pages highlight 

areas where public health measures have succeeded in 

decreasing disease incidence, while also identifying other 

diseases that still remain a challenge. The data tables 

included in the document provide disease incidence and 

rate per year from 1919 to 2014 as it was collected. 

Hlstoncal Noh~able [)seases 1n Atberta ·· 1919-2014 3 
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4 

Dedication 

Dr. John Waters (1943-2001) 

This report is dedicated to the late Dr. John Waters. 

Dr. Waters was a highly respected Chief Medical Officer 

of Health in Alberta for 21 years. He was a passionate 

public health advocate and leader in protecting the health 

of Albertans, in particular children. His main focus was 

controlling communicable diseases through immunization 

programs. 

Dr. Waters felt strongly about the importance of 

communicable disease surveillance and the value of 

historical data. John's collection of notifiable disease 

data for the province dated back to 1919, which was 

compiled in various formats. Based on his wisdom and 

experience, the data in this report is presented in a format 

that provides the reader with easy access to this important 

historical data. Lessons learned from the past are applied 

to the emerging diseases of today. 

"Dr. Waters has made the well being of Canadians 
17is life work" 

Adrienne Clarkson, Governor General of Canada, 
December 1, 2002 

Hstorical Not1flable Diseases n Alberta - 1919 2014 O 2015 Government or Alberta 
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Campylobacterlosis 
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Campylobacteriosis is an enteric illness caused by bacteria 
in the Campylobacter group. The two most common species 
are C. jejuni and C. coli. 

Campyfobacteriosis 
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Campylobacteriosis 
became reportable 
in 1983 and is the 
most commonly 
reported enteric illness. 
Reported rates of 
campylobacteriosis 
increased between 1983 
and 1994 and remained 
fairly constant until 2003. 
Since 2004, Alberta 
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has reported between 
830 and 1,216 cases 
each year. 

Year 

Chlamydial Infections 
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Chlamydia is caused by the bacterium Chlamydia 
trachomatis. 
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Historical Notof·ab:e Diseases 1n Alberta - 1919-2014 

1989. Between 1989 
and 1993, reported rates 
of chlamydial infections 
decreased and then 
remained consistent until 
1999. Since 2000, Alberta 
has seen a marked 
increase in the infection 
rate rising from 194 cases 
per 100,000 in 2000 to 
403 cases per 100,000 in 
2014. Currently, it is the 
most common bacterial 
sexually transmitted 
infection (STI). 

e 2015 Goverrvnent of Alberta 
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Diphtheria 
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Diphtheria is caused by the bacterium Corynebacterium 
diphtheriae. 

Diphtheria Data has been available 
since 1919. The highest 
recorded number of 
diphtheria cases was in 
1921 when 978 cases 
were reported. Before 
routine immunization was 
introduced in 1948 it was 
one of the most common 
causes of death in children 
under five years of age. 
Since then there has been 
a substantial decline in 
morbidity and mortality. 

From 1981 to 1994, only one acute respiratory case and 13 
acute cutaneous cases were reported. In 2004 and 2007 
sporadic cutaneous diphtheria cases were detected. 

Hemorrhagic Colitis (E. coli 0157:H7) 
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Hemorrhagic colitis is commonly caused by the bacterium 
Escherichia coli serotype 0157:H7. 

E.coli 0157:H7 

A 

;v1 I\ r\ I~ l/\;\ 
I . j ~ \1 ' '\ 

/ \ / ' ~-j 
i ' ,;-' 

I v \ 

,<IJ ... ,<IJ .... ,<1J"" ,"'3 ,rll'"' ,<IJ",. ,<1J<1J" ,<I"" 'I,# "'<I>"'"'~· 'l,r:;<:>" "'<I>" "'r:;'r:; ,..r:;' .. ,..r:;'• 

Year 

Escherichia coli 0157:H7 
became reportable in 
1983. Rates of E. colt 
0157:H7 are highly 
variable, primarily due to 
the outbreaks it causes. 
Since reportability, Alberta 
has reported between 26 
and 405 cases per year. 
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Giardlasls 
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Reportable Giardrasis is an intestinal infection caused by the 
parasite Giardia lamblia. 

Giardiasis 

\ 

Giardiasis became 
reportable in 1983. 
Since 1986 when cases 
peaked at just over 1,600 
incidence of giardiasis has 
decreased to between 
400 and 550 cases 
per year. 

This decreasing 
trend aligns with the 
Canadian one. 
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Gonococcal Infections 
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Gonorrhea, the second most common sexually transmitted 
infection, is caused by the bacterium Neisseria gonorrhoea. 

Gonococcal Infections 
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Gonococcal disease data 
has been available since 
1919. Between 1980 
and 1997, the reported 
rate of gonococcal 
infections decreased 
significantly. This decline 
has been partially 
attributed to change in 
sexual practices due to 
increased awareness of 
the threat of HIV/AIDS. 
Rates began to increase 
in 1997. Since 2000, 
Alberta has reported a 
rate between 19 and 62 
cases per 100,000. 

Historical Not<f1able Diseases 1n Aberta -1919-2014 e 2015 Government of Alberta 
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Haemophilus lnfluenzae Invasive, 'lft>e B 

Hepatitis A 
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Haemophilus innuenzae type B (Hib) bacteria is known to 
cause bacterial meningitis. Historically, rates were highest in 
children less than five years of age. 

Haemophilus lnfluenzae Invasive, Type B 

Vaccine Introduced (1987) 

Year 

Invasive Hib became 
reportable in Alberta 
in 1979. With the 
introduction of Hib 
vaccine in 1987, the 
incidence of infection 
has dropped significantly. 
Alberta reported a peak of 
14 7 cases of Hib in 1986 
and only sporadic cases 
since 1993. 

Hepatitis A is an acute viral illness caused by the 
hepatitis A virus. 

Hepatitis A 
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With the exception of 
195 7, hepatitis A data 
has been available since 
1949 although it was not 
formally reportable until 
1969. Reported rates of 
hepatitis A have been 
steadily decreasing since 
1970. Since 2000, Alberta 
has reported between 24 
and 65 cases annually. 
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Hepatitis B 

Hepatitis C 

Hepatitis 8, formally referred to as Serum Hepatitis, is 
caused by the hepatitis B virus. 

Hepatitis B 
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Acute hepatitis B cases 
became reportable in 
Alberta in 1969, and 
chronic cases in 2008. 
Reported rates of acute 
hepatitis B infections have 
been decreasing since 
1983. A further reduction 
was seen once routine 
immunization programs 
were introduced in 1995. 
Since 1995, Alberta has 
reported between 20 
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each year. 

The increase seen in 2006 onward is correlated with 
screening practices and an increase in new Albertans from 
countries where Hepatitis B is endemic. 

Hepatitis C, a blood-borne pathogen, caused by the 
hepatitis C virus, became reportable in 1996. Both acute and 
chronic cases are reportable. 

Hepatitis C Hepatitis C is one of the 
most common notifiable 
diseases in Alberta. In 
1998,Albertareported 
just in excess of 2,900 
cases. Since then, the 
number of identified 
hepatitis C cases reported 
has decreased steadily. 
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Human Immunodeficiency Virus (HIV) Infection 

Measles 
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Human Immunodeficiency Virus (HIV) is the virus that causes 
Acquired Immunodeficiency Syndrome (AIDS). 

HIV Infection 
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HIV became reportable 
in Alberta in May 1998, 
with reported rates of 
HIV infections remaining 
relatively constant. 
Since 1998, Alberta has 
reported between 138 
and 284 cases per year. 
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Measles, a highly communicable disease caused by the 
measles virus in the genus Morbillivirus, is one of the most 
serious diseases of childhood. 

Measles 
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l 

Measles data for Alberta 
has been available 
since 1919. Historically, 
outbreaks of measles 
occurred approximately 
every three years. The 
highest recorded number 
of measles cases was in 
1957 when 12,337 cases 
were reported. Routine 
immunization has led to 
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. . 

a substantial decline in 
measles morbidity and 
mortality. Since 2000, 
measles cases have been 
sporadic. In 2013 there 
was a measles outbreak 
in Southern Alberta with 
44 confirmed cases 
reported. 
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Menlngococcal Disease, Invasive 

Mumps 

12 

Invasive meningococcal disease (IMD) is caused by the 
bacteria Neisseria meningitidis. 

Meningococcal Disease, Invasive 
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Data on IMO has been 
available since 1924. 
Historically, outbreaks 
occur every ten to twenty 
years. A significant 
outbreak recorded 
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in Alberta began in 
December 1999, involving 
over 140 cases. In 
2002, a routine infant 
immunization program 
to prevent serogroup C 
infection was introduced. 
Since then less than 25 
cases have been reported 
each year. 

Mumps is caused by a virus that is a member of the 
Paramyxoviridae family. 

Mumps Mumps became 
reportable in 1979. 

Roubne vacc'"at0on (19821 The h'ghest number of 

1 
reported cases occurred 
in 1981 when 2,217 cases 
were reported. Routine 
immunization programs 
introduced in 1982 have 
led to a substantial decline 
in the number of cases of 
mumps. The last outbreak 
began in the fall of 2007 in . - -...--. . southern Alberta resulting 
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Pertussis 

Pertussis, a bacterial disease caused by the bacterium 
Bordetella pertussis, is a cyclical disease, with outbreaks 

Pertussis 
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expected approximately 
every five years among 
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Pertussis data has been 
available since 1919. 
Since the introduction of 
the diphtheria-pertussis 
tetanus vaccine in 
1948, the overall rate of 
pertussis has decreased. 
A significant outbreak 
occurred between 
September 1989 and 
April 1990 with 2, 921 
cases reported. In 1997, 

the whole cell pertussis vaccine was replaced by the 
currently used accellular product. 

Pneumococcal Disease, Invasive 
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Pneumococcal disease is caused by the bacterium 
Streptococcus pneumoniae, of which there are approximately 
90 serotypes. 

Invasive Pneumococcal Disease 
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Invasive pneumococcal 
disease became 
reportable in 1998. A 
routine polysacchande 
immunization program 
was introduced in 1997 to 
high risk persons over the 
age of two years. Invasive 
Streptococcus pneumonia 
was put under suNeillance 
to monitor the success 
of the enhanced 
pneumococcal vaccine 
program. A 7-valent 
conjugate vaccine was 

introduced in 2002 and in 201 O a 13-valent vaccine replaced 
it. Despite the introduction of these immunization programs, 
overall rates remain high, although rates among infants 
have decreased. 
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Poliomyelitis 

Rubella 
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Poliomyelitis is caused by poliovirus types 1, 2 and 3. 

Poliomyelitis 
160...--------------------. 

Polio data has been 
available since 1919. Polio 
has been a significant 
source of morbidity and 
mortality. Immunization 
against polio has almost 
eradicated this disease 
from the Western 
Hemisphere. Indigenous 
wild poliovirus cases still 
occur in parts of Africa 
and Asia. 
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Since 1968, three cases 
of symptomatic polio 
were reported in Alberta, 

with the last case reported in 1979. Two were attributed to 
the administration of live virus vaccine, and the third was 
a non-immunized child. Introduction of inactivated polio 
vaccine in 1956 has eliminated the risk of vaccine associated 
polio disease. 

Rubella is caused by the rubella virus. 

Rubella 
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l MMR (1982) 

Rubella has been 
reportable since 1926. 
Rubella is a cyclical 
disease, with outbreaks 
expected approximately 
every five to seven 
years in susceptible 
populations. Routine 
immunization programs 
introduced 1n 1971 
contributed to the 
substantial decline in 

I ! /'ii ! MMRV (2012) 
I I ! I 1;. I I, ii I I 

0 - • I I I the number of cases of 
rubella. Since 2000 only 
20 cases of rubella have 
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been reported. 
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Salmonellosls 

Smallpox 

© 2015 Government of Aberta 
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Safmonellos1s is caused by Salmonella bacteria. 

Salmonellosis 
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Salmonellosis has 
been reportable since 
1959. Reported rates of 
salmonellosis are vanabfe, 
primarily due to the high 
transmissibility potential of 
the disease. Since 2004, 
Alberta has reported rates 
between 20 and 28 cases 
per 100,000 each year. 
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Smallpox is caused by the Vario/a virus. Immunization has 
eradicated wild smallpox worldwide, as declared 1n 1978 by 
the World Health Organizat.on. 

Smallpox 

Smallpox vacone introduced m Canada rn 1916 
1962 ·Canada s last smallpox case reported 

Smallpox data is available 
since 1919. Routine 
immunization, introduced 
1n 1916, was discontinued 
in Canada in 1980. The 
last case of smallpox in 
Alberta occurred in 1943. 
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Syphilis 

Syphilis is caused by Treponema pallidum, a spirochete. 
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Syphilis data has been 
available since 1921. 
Syphilis rates decreased 
after 1930 with the advent 
of penicillin. Since then, 
a significant syphilis 
outbreak occurred in 
1984 with 574 cases 
reported. Subsequent 
years showed a decline in 
the number of cases until 
2003 when the number 
of cases again increased. 
The rate of cases reported 
declined in 201 O after 
the launch of a public 
awareness campaign. 

Tuberculosis 

16 

l uberculos1s is caused by the bacteria Mycobacterium 
tuberculosis. 

Tuberculosis 
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Hostorca1 Not1f1abte Dseases 1n Alberta - 1919·2014 

Tuberculosis data 
has been available 
since 19?0. With the 
advent of antibiotics 
and introduction of 
BCG vaccine in 1956, 
the number of cases 
of tuberculosis has 
decreased until the 80's 
when rates reached a 
plateau. Since 2000 
fewer than 217 cases are 
reported each year. In 
recent years, the majority 
of tuberculosis cases 
were amongst foreign 
born Albertans. 
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Typhoid and Paratyphoid 

Cl 2015 Government of Alberta 

Typhoid and paratyphoid are caused by the bacteria 
Salmonella typhi and Salmonella paratyphi respectively. In 
most cases, typhoid is not a chronic disease, however, a few 
people remain infected for life. 

Typhoid and Paratyphoid 
so ..---------

0 t - .,. ' ..,... .~ - 'T'" ....,..._.,.._ ' 

,,,;1.0,.;1.\.,•J\.p\oi\o,>'\0;'>0,0;'>\o,a\<1>\0;1°,.,"1\0;'1\o,t\<fJ\0;°'\<i>\<i>\o'\o'" 
Year 

Typhoid fever data has 
been available since 1919: 
paratyphoid since 1929. 
Reported rates of typhoid 
fever have been steadily 
decreasing since the 
1920s. Since 2000, recent 
typhoid and paratyphoid 
cases in Alberta were 
almost exclusively 
associated with foreign 
travel to an endem;c area 
with the exception of three 
cases in 2014 where a link 
to an endemic area could 
not be found. 
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COVID-19 - Variants of Concern 

The first variant of concern (VOC), the B.1.1.7 variant, was identified in December 25, 2020 from an individual 

that recently travelled to the UK. By May 1, 2021 a total of 35,291 voe cases were identified and the B.1.1.7 

variant was the dominant strain and more new daily cases are voes than the original wild type strain. 
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COVID-19 - Variants of Concern 

All of the health zones in Alberta are have VOC cases, and transmission is occuring across the province. The 
Calgary Zone has experinced a disproportonal number of cases and the resulting third wave has impacted the 
Calgary Zone more than other parts of the province. 
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COVID-19 - Variants of Concern 

The increased transmission of the voes makes household attack rates higher than with the wild type. This aligns 
to the findings of other nationally and internationally1•

2 
• The high household transmission rates make it critical 

to minimize outbreaks as a case produced from those outbreaks can lead to entire households becoming 
infected. 
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How Disease Was Likely Acquired 

1 Increased household secondary attacks rates with Variant of Concern SARS-CoV·2 index cases 
Sarah A. Buchan, Semra Tibebu, Nick Daneman, Michael Whelan, Thuva Vanniyasingam, Michelle Murti, Kevin A. Brown 
medRxiv 2021.03.31.21254502; doi: https://doi.org/10.1101/2021.03.31.21254502 
2 Increased transmissibility of the B.1.1. 7 SARS-CoV-2 variant: Evidence from contact tracing data in Oslo, January to 
February 2021. Jonas Christoffer Lindstr111m, Solveig Engebretsen, Anja Brc\then Krlstoffersen, Gunnar (ijyvind lsalcsson Rell, 
Alfonso Oiz-Lois Palomares, Kenth Eng111-Monsen, Elisabeth Henie Madslien, Frode Ferland, Karin Maria NygArd, Frode 
Hagen, Gunnar Gantzel, Ottar Wiklund, Arnoldo Frigessi, Birgitte Freiesleben de Blasio 
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